Microsoft Fabric: Capacity Cost Management Part 3, Pause Capacity During Christmas with Azure Logic Apps

Microsoft Fabric: Capacity Cost Management Part 3, Pause Capacity During Christmas with Azure Logic Apps

In the first blog post of this series, I explained that we can Pause and Resume a Microsoft Fabric capacity from Azure Portal. In the second blog and its accompanying YouTube video, I showed you how to automate the Pause and Resume actions in Azure LogicApps so the capacity starts at 8:00 AM and stops at 4:00 PM. While I have already mentioned in those posts, it is worthwhile to mention again that these methods only make sense for PAYG (Pay-As-You-Go) capacities and NOT the Reservation capacities. While the method works fine, you may need more fine-tuning.

Managing operational costs becomes crucial for businesses leveraging Microsoft Fabric capacities when the holiday season approaches. This presents a unique challenge of maintaining efficiency while reducing unnecessary expenses, especially during Christmas when business operations might slow down or pause entirely.

In this post and video, I will extend the discussions from my previous blog and demonstrate how to optimise your Azure Logic Apps to manage Microsoft Fabric capacity during the Christmas holidays.

Extending the Logic Apps Workflow

Existing Setup Recap

In earlier discussions, we’ve explored using Azure Logic Apps to manage Fabric capacity effectively from 8:00 AM to 4:00 PM on regular business days and pausing operations afterwards. This setup ensures that we’re not incurring costs when the capacity isn’t needed, particularly from 4:00 PM to 8:00 AM the next morning, and throughout the weekends. I encourage you to check out my previous post for more information. This is how the existing solution looks like in Azure LogicApps:

Automating Microsoft Fabric Capacity with Azure LogicApps
Automating Microsoft Fabric Capacity with Azure LogicApps

Incorporating Holiday Schedules

The key to extending this setup for the Christmas period lies in integrating specific holiday schedules into your existing workflows using Workflow Definition Language which is used in Azure Logic Apps and Microsoft Flow. The following expression determines if the current date (in New Zealand Standard Time) falls within the period from December 25th of the current year to January 2nd of the next year:

and(
    greaterOrEquals(
        int(
            formatDateTime(
                convertFromUtc(
                    utcNow(), 
                    'New Zealand Standard Time'
                ), 
                'yyyyMMdd'
            )
        ), 
        int(
   concat(
    formatDateTime(
     utcNow()
     , 'yyyy'
     )
    , '1225'
    )
   ) 
    ), 
    lessOrEquals(
        int(
            formatDateTime(
                convertFromUtc(
                    utcNow(), 
                    'New Zealand Standard Time'
                ), 
                'yyyyMMdd'
            )
        ), 
        int(
   concat(
    add(
     int(
      formatDateTime(
       utcNow()
       , 'yyyy'
       )
      )
     ,1
     )
    , '0102'
    )
   )
  )
)

The following section explains how the expression works.

Continue reading “Microsoft Fabric: Capacity Cost Management Part 3, Pause Capacity During Christmas with Azure Logic Apps”

Microsoft Fabric: Capacity Cost Management Part 2, Automate Pause/Resume Capacity with Azure Logic Apps

Automate Pause Resume Suspend Fabric Capacity with Azure Logic Apps

In the previous blog post, I explained Microsoft Fabric capacities, shedding light on diverse capacity options and how they influence data projects. We delved into Capacity Units (CUs), pricing nuances, and practical cost control methods, including manually scaling and pausing Fabric capacity. Now, we’re taking the next step in our Microsoft Fabric journey by exploring the possibility of automating the pause and resume process. In this blog post, we’ll unlock the secrets to seamlessly managing your Fabric Capacity with automation that helps us save time and resources while optimising the usage of data and analytics workloads.

Right off the bat, this is a rather long blog, so I added a bonus section at the end for those who are reading from the beginning to the end. With that, let’s dive in!

The Problem

As we have learned in the previous blog post, one way to manage our Fabric capacity costs is to pause the capacity while not in use and resume it again when needed. While this can help with cost management, as it is a manual process, it is prone to human error, which makes it impractical in the long run.

The Solution

A more practical solution is to automate a daily process to pause and resume our Fabric capacity automatically. This can be done by running Azure Management APIs. Depending on our expertise, there are several ways to achieve the goal, such as running APIs on running the APIs via PowerShell (scheduling the runs separately), running the APIs via CloudShell, creating a flow in Power Automate, or creating the workflow in Azure Logic Apps. I prefer the latter, so this blog post explains the method.

I also explain the same scenario on my YouTube channel. Here is the video:

Automating Pause and Resume Fabric Capacity with Azure Logic Apps

Here is the scenario: we are going to create an Azure Logic Apps workflow that automatically does the following:

  • Check the time of the day
  • If it is between 8 am to 4 pm:
  • Check the status of the Fabric capacity
  • If the capacity is paused, then resume it, otherwise do nothing
  • If it is after 4 pm and before 8 am:
  • Check the status of the Fabric capacity
  • If the capacity is resumed, then pause it, otherwise do nothing

Follow these steps to implement the scenario in Azure Logic Apps:

  1. Login to Azure Portal and search for “Logic App
  2. Click the Logic App service
Finding Logic Apps on Azure Portal

This navigates us to the Logic App service. If you currently have existing Logic Apps workflows, they will appear here.

Continue reading “Microsoft Fabric: Capacity Cost Management Part 2, Automate Pause/Resume Capacity with Azure Logic Apps”

Microsoft Fabric: Capacity Options and Cost Management, Part 1; The Basics

Microsoft Fabric: Capacity Options and Cost Management, Part 1

Microsoft Fabric is a SaaS platform that allows users to get, create, share, and visualise data using a wide set of tools. It provides a unified solution for all our data and analytics workloads, from data ingestion and transformation to data engineering, data science, data warehouse, real-time analytics, and data visualisation. In a previous blog post, I explained the basics of the Microsoft Fabric data platform. In a separate blog post, I explained some Microsoft Fabric terminologies and personas where I explained what Tenant and Capacities are.

In this blog post, we will explore the different types of Fabric capacities, how they affect the performance and cost of our Fabric projects, and how you can control the capacity costs by pausing the capacity in Azure when it is not in use.

Fabric capacity types

Fabric capacities are the compute resources that power all the experiences in Fabric. They are available in different sizes and prices, depending on our needs and budget. We can currently obtain Fabric capacities in one of the following options:

If we want to purchase Microsoft Fabric capacities on Azure, they come in SKUs (Stock Keeping Units) sized from F2 – F2048, representing 2 – 2048 CU (Capacity Units). A CU is a unit of measure representing the resource power available for a Fabric capacity. The higher the CU, the more resources we get on our Fabric projects. For example, an F8 capacity has 8 CUs, which means it is four times more powerful than an F2 capacity, which has 2 CUs.

When purchasing Azure SKUs with a pay-as-you-go subscription, we are billed for compute power (which is the size of the capacity we choose) and for OneLake storage, which is charged for the data stored in OneLake per gigabyte per month (approximately $0.043 (New Zealand Dollar) per GB). OneLake is the unified storage layer for all the Fabric workloads. It allows users to store and access our data in a secure, scalable and cost-effective way.

Azure Fabric capacities are priced uniquely across regions. The pay-as-you-go pricing for a Fabric capacity at Australia East region is $0.3605 (NZD) per CU per hour, which translates to a monthly price of $526.217 (NZD) for an F2 ($0.3605 * 2 * 730 hours).

Microsoft Fabric pricing overview
Microsoft Fabric pricing overview

It is important to note that billing is per second with a one-minute minimum. Therefore, we will be billed for when the capacity is not in use. Here is a full list of prices available at the Azure portal by selecting our Fabric capacity region.

Now that we have an indication of the costs of owning Microsoft Fabric capacities let’s explore the methods to control the cost.

Nuances of Fabric’s Cost of Ownership

It is important to note that all the math we have gone through in the previous section is just about the capacity itself. But are there any other costs that may apply? The answer is it depends. If we obtain any SKUs lower than F64, we must buy Power BI Pro licenses per user on top of the capacity costs. For the tiers above F64, we get unlimited free users but, BUT, we still have to purchase Power BI Pro licenses for all developers on top of the cost of the capacity itself.

Another gotcha is that the Fabric experiences are unavailable to either Power BI Premium (PPU) users or the Power BI Embedded capacities. Just be mindful of that.

The good news for organisations owning Power BI Premium capacities is that you do not need to do anything to leverage Fabric capabilities. As a matter of fact, you already own a Fabric capacity, you just need to enable it on your tenant.

Continue reading “Microsoft Fabric: Capacity Options and Cost Management, Part 1; The Basics”

What Does XMLA Endpoints Mean for Power BI and How to Test it for Free?

Test Environment from Power BI XMLA Endpoint

XMLA endpoint connectivity for public preview has been announced late March 2019. As at today, it is only available for Power BI Premium capacity users. This sounds like a massive restriction to a lot of people who don’t have a Premium capacity, but they’d love to see how it works. In this article I show you an easy way to get your hands to Power BI XMLA endpoint as quick as possible. Before I start, I’d like to simply explain what XMLA endpoint is and what it really means for Power BI users.

Power BI is Like Onion! It has layers!

Generally speaking, Power BI has two different layers, presentation layer and data model layer. Presentation layer is the visual layer, the one you make all those compelling reports and visualisations. The data model as the name resembles, is the layer that you make your data model in. This layer is the one you can access it via XMLA connectivity.

In a Power BI Desktop file, you can see both layers:

Different layers of Power BI

How XMLA Relates to Different Layers in Power BI?

As you may have already guessed, XMLA is only related to the data model layer and it has nothing to do with the presentation layer. So you may connect to a data model, browse the data model, import data from the model to other platforms like Excel and so forth.

XMLA Is Not New!

Seriously? Yes, seriously. It is not new. It’s been around for many years and perhaps you’ve already used it zillions of times. Whenever you’re connecting to an instance of SQL Server Analysis Services, either Multidimensional or Tabular from any tools like SQL Server Management Studio (SSMS), Power BI Report Builder, Excel, Tableau, etc…, you’re using XMLA connectivity indeed.

Power BI is an Instance of SSAS Tabular

It is true. Power BI runs a local instance of SSAS Tabular model. So, whenever you open a Power BI Desktop file (PBIX), Power BI creates a local instance of SSAS Tabular model with a random local port number that can be accessed on your local machine only. When you close the file, the local instance of SSAS Tabular is shut down and its port number is released.

I first revealed the fact that you can connect to the underlying data model in Power BI Desktop from whole different range of tools like SSMS, SQL Server Profiler, Excel, etc… on Jun 2016. So, we indeed were using XMLA to connect to Power BI data models for a long time. We can even take a step further to import our Power BI data models into an instance of SSAS Tabular. In that sense, we are literally generating XMLA scripts from Power BI to create the same data model in SSAS Tabular. How cool is that?

Sooo… What is new then?

Continue reading “What Does XMLA Endpoints Mean for Power BI and How to Test it for Free?”